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A B S T R A C T   

In this paper, the stability in a rectangular functionally grade material (FGM) plate with central crack is studied. 
The plate thickness is changed exponentially following the length of the plate. The properties of the FGM plate 
are assumed to vary along the thickness direction according to a simple power law distribution. Based on the 
phase-field theory, the new third order shear deformation plate theory (TSDT) and the finite element method 
(FEM), the stability of cracked FGM plate is determined. The obtained numerical results are compared with the 
published articles to ensure credibility. The work also considered effects of changing of the plate thickness ratio, 
length, crack angle and volume fraction exponent of the functionally graded material on the stability of the plate. 
Lastly, some visual images of the mechanical instability forms of cracked FGM plates will be introduced.   

1. Introduction 

Functionally graded materials (FGMs) in plate structures have been 
developing for such a long time and applicable in many fields of engi
neering problems due to their outstanding advantages. However, their 
behaviors during actual using with the consideration of technical effects 
are still not researched comprehensively. Since the FGMs are popularly 
applied in extremely severe working conditions such as in great loading 
or high temperature environment, the structure probably appears de
fects such cracks. These kinds of failure appearances will weaken 
strongly the integrity as well as the durability of the structure. 

Additionally, it will be easier to make the plate be instable with the 
effect of cracks when applying the loading compared to the situation of 
plates that do not have the fractures. Considering the instability prob
lems in plate structures, buckling phenomenon is the most serious 
behavior due to its unexpected occurrence when the structure suddenly 
reaches over the highest stress concentration due to a huge thermal or 
mechanical load applied, then the structure could be made to be in 
buckling state before reaching to the yield stress state, there is predict
able if the capacity of load will be decreased greatly. There are huge 
numbers of studies in buckling of plate structures. In Yang’s study [1], 
an analysis on buckling is done for FGM plate setting up on the elastic 

foundation which is modelled based on the formulation of Pasternak. In 
the research of Thai [2], the principle of Hamilton is applied to derive 
the constitutive equations for buckling behaviors of the plate which is 
set on Pasternak foundation. After that, Thai and Kim [3], with the same 
condition for plate resting on the foundation of Pasternak, an investi
gation for buckling of FGM plate are presented as a closed-form solution. 
Numerical method is also used comprehensively in the study of Praveen 
and Reddy [4], on the basement of the shear deformation plate theory in 
first order (FSDT), the mechanical behaviors of nonlinear statics and 
dynamics on the ceramic-metal FGM plate are analyzed by finite 
element method under a steady temperature and dynamics transverse 
load conditions. Especially, Reddy [5] has studied the buckling phe
nomenon of FGM plate with the boundary condition as simple supported 
using the shear deformation plate theory in higher order. This study has 
avoided the consideration of the zero transverse shear components at the 
interface of plate. Yu et al. [6] used a modified Mori-Tanaka and a 
self-consistent method to study the material properties by modeling the 
FGMs, Mirzavand et al. [7] studied the thermal buckling of FGM plate 
that combined with piezoelectric actuators bonded in interface or in the 
research of Nemat-Alla [8], a 2D-FGM was developed to achieve a better 
reduction of the thermal stress. Additionally, a new solution for thermal 
buckling of FGM plate was proposed by Shariat and Eslami [9] in the 
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closed-form that they have used the shear deformation plate theory in 
first order to investigate a thick plate, being similar in using the first 
order plate theory. Liu et al. [10] proposed a new numerical analysis in 
buckling of cracked FGM plates by applying both uniaxial and biaxial 
compression loads, the study used an accurate extended 3-node trian
gular plate element in the frame of the extended finite element method 
(XFEM). 

Fracture problems such as cracking have an indispensable role in 
engineering design, analysis, and application, so it is very important to 
have a useful tool to achieve a well understanding in fracture in
vestigations. Many fracture problems have been modelled by finite 
element method based on various techniques to treating the cracks. 
Though the approaches by finite element method have been used 
extensively, most of the models using finite element method are so 
fundamental with the virtual crack closure technique [11], or as a 
remarkable method in modeling fracture, the extended finite element 
method which is introduced by Moes [12] has also got many focuses 
from researchers. Nevertheless, these kinds of method still deal with 
cracking problems in which the cracks are represented discretely and 
discontinuously, and generally require an explicit and rigorous tech
nique to track the crack path, or need to have applying the strategy of 
taking average of re-meshing model, in another word, the discontinu
ities due to the cracking defects are not described well in the model. 
Phase-field theory is proposed as an advantage method to deal with 
those problem, it is able to simulate and compute numerically and 
effectively in both static and dynamic problems such cracking due to its 
advantages in modeling and analyzing internal fracture in structure such 
as representing the geometries, shapes and the number of fractures more 
easily. By applying phase-field method, Duc et al. [13,14] did the 
exploration of dynamic propagation of cracks in FGM plate, on the other 
hand, Thom et al. [15] used this method to analyze the effect of various 
crack’s parameters such as size and position in the static instability of 
FGM plate, after that in another study, he has studied the thermal 
buckling behavior of cracked FGM plate considering the neutral surface 
of the plate. The useful applications of phase-field method have been 
proved in many research, Ulmer et al. [16] applied phase-field approach 
for a complicated topology of fractures in both plate and shell, Amiri 
et al. [17] used phase-field method to model the fracture for linear thin 
shells, Kuhn [18] proposed a continuum phase-field model for different 
formulations of brittle cracking problem, or Areias et al. [19] used 
phase-field method in a study of finite-strain plates and shells. In the 
study of Borden [20], he has demonstrated that phase-field method is 
able to reduce significantly the implementation complexity in compu
tation process. It is clearly that phase-field method is getting many 
concentrations from research communities, especially in fracture me
chanics field. 

Recently, the applications of plate structure with more compli
cated physical shapes are becoming a new trend in engineering fields. 
Nonetheless, the negative side of these kinds of structure is that the 
failure behavior such buckling is more complicated than the flat plate 
structures, especially with the effect of cracking problems. With the 
consideration of complex shape such the change of thickness, the 
buckling phenomenon of plate structure will become much more 
difficult to understand comprehensively, Duc et al. [21] has demon
strated the effect of the change on plate thickness in a recently study 
that with a change of plate thickness with 0.05 mm only. According to 
the best knowledge of the authors, it may be existed several studies in 
buckling problems of plate structure with variable thickness consid
ering the normal materials of which the material properties are being 
constant, for example, Phuc et al. [22] has used the Reissner-Mindlin 
first order shear deformation theory (FSDT) and phase field theory to 
analyze the buckling behavior of the homogeneous plate with linear 
variable thickness; however, there has been recently no publication 
for these investigations of the FGMs problem with the effect of cracks 
in which the material properties vary according to the thickness of 
materials. Thus, it is indispensable to study and understand these 

problems thoroughly. 
This paper focuses on an analysis in critical buckling behaviors of 

FGMs plate having variable thickness with cracking effect using phase 
field theory for modeling the defects, and the new third order shear 
deformation theory [24] for modeling the plate structure. The 
calculated results are compared with the solutions of reference [10, 
23,25] to show the high reliability of the proposed computational 
method. Then, the impact of the variable thickness of the FGM plate 
on critical buckling values in plate’s instability is investigated and 
discussed in the following sections. The analysis of buckling behavior 
in ceramic-metal FGM plate with the variable thickness provides very 
useful information to predict the failure risks in engineering prob
lems, also improves and develops a new computational model in plate 
structural problems. The second section presents the plate modeling 
method which is the new third order shear deformation theory, after 
that, the next section describes the phase-field method applying for 
crack modeling. The analyses for buckling computations are discussed 
in the fourth section. Lastly, some conclusions will be summarized in 
the conclusion section. 

2. The third order shear deformation theory of FGM plates with 
thickness varying according to the x-axis 

Functionally graded plates are normally considered to be changing in 
the material properties following the direction along the plate thickness 
due to the volume fractions index n. In this study, a specific type of the 
functionally graded materials (FGMs) is chosen as ceramic-metal P- 
FGMs plate with a thickness varying according to the x-axis hðxÞ as 
described in Fig. 1, supposing that its bottom and top surfaces are being 
fully composed by metallic and ceramic, respectively. To make the in
tegral numerical computation be easier, the xy-plane is placed to be in 
the mid-plane of the plate, whereas the positive z-axis is upward from 
the xy-plane. There are several explanations for the variation of the 
volume fractions index through the thickness hðxÞ of the plate, however 
in this study, the common simple power-law assumption for describing 
the volume fraction of the ceramic Vc and the metal Vm [1,3–5,7] is 
being used: 

Vm¼

�
z

hðxÞ
þ

1
2

�n

; Vm ¼ 1 � Vc with n � 0 (1) 

With c and m are the ceramic and metal material respectively, z is the 
thickness coordinate variable with � hðxÞ=2 � z � hðxÞ=2, the variable 
n is signified as non-negative volume fraction gradient index. The 
Young’s modulus E, the Poisson’s ratio υ with a power-law distribution 
as below [1,3–5,7]: 

EðzÞ¼EmþðEc � EmÞ

�
z

hðxÞ
þ

1
2

�n

; υðzÞ¼ υmþðυc � υmÞ

�
z

hðxÞ
þ

1
2

�n

(2) 

This paper introduces a finite element formulation for functionally 
graded plate which uses a new simple third-order shear deformation 
plate theory by Shi [24] based on rigorous kinematic assumption on 
displacements. It may be due to the fact that the kinematic of dis
placements is derived from an elasticity formulation rather than the 
hypothesis of displacements. The three-dimensional displacements ðu; v;
wÞ at a point ðx; y; zÞ in the plate can be expressed in terms of five un
known variables as follows: 

uðx; y; zÞ ¼ u0ðx; yÞ þ
5
4

�

z �
4

3h2ðxÞ
z3
�

ϕxðx; yÞ þ
�

1
4

z �
5

3h2ðxÞ
z3
�

w0;x

vðx; y; zÞ ¼ v0ðx; yÞ þ
5
4

�

z �
4

3h2ðxÞ
z3
�

ϕyðx; yÞ þ
�

1
4

z �
5

3h2ðxÞ
z3
�

w0;y

wðx; y; zÞ ¼ w0ðx; yÞ
(3)   
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Where u; v; w define the displacements at the mid-plane of a plate in the 
x; y; z directions respectively. While ϕx; ϕy represent the transverse 
normal rotations of the x and y axes. The comma describes the derivative 
against x and y coordinates. 

From the Hooke’s law, the relationship of the normal and shear stress 
with respect to the strains and shear components through the following 
constitutive equations is given by: 

8
<

:

σ ¼ DmðzÞ
�
εð0Þ þ zεð1Þ þ z3εð3Þ

�

τ ¼ DsðzÞ
�
γð0Þ þ z2γð2Þ

�

With σ ¼
�
σx σy σxy

�T
; τ ¼

�
τyz τxz

�T

(5)  

DmðzÞ¼
EðzÞ

1 � υ2ðzÞ

2

6
6
6
6
6
6
6
4

1 υðzÞ 0

υðzÞ 1 0

0 0
1
2
½1 � υðzÞ�

3

7
7
7
7
7
7
7
5

; DsðzÞ

¼
EðzÞ

2½1þ υðzÞ�

2

6
4

1 0
0 1

3

7
5 ð6Þ

It is necessary to notice that equation (5) are denoted εð0Þ; εð1Þ; εð3Þ;
γð0Þ; γð2Þ for the strain and shear components induced from equation (4) 
of displacements in the plate [24]. 

According to the third order shear deformation theory proposed by 
Shi [24], the normal forces, bending moments, higher order moments 

Fig. 1. Geometry of a functionally graded plate with thickness varying according to the x-axis.  

Fig. 2. The non-cracked plate with exponentially varying thickness under uniaxial compression load in x direction.  
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and shear forces can be computed and written through the following 
constitutive equations: 
8
>>>>>>>><

>>>>>>>>:

eN
eM
eP
eQ
eR

9
>>>>>>>>=

>>>>>>>>;

¼

2

6
6
6
6
6
6
6
6
4
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_

B
_

0 0 0 B
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D
_

3

7
7
7
7
7
7
7
7
5

8
>>>>>>>><

>>>>>>>>:

εð0Þ

εð1Þ
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γð0Þ
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9
>>>>>>>>=

>>>>>>>>;

(7)  

With ðA;B;D;E;F;HÞ¼
Z h=2
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�
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_

;B
_
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_

Þ

¼
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UðδÞ ¼
1
2

qT
e

Z

Ω
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B
@
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4 A
_
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4 B
_

B5þ

þ BT
5 B
_
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5 D
_
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1

C
C
C
C
A

dΩqe (9)  

Where UðδÞ is potential energy for plate without of cracks, qe is used to 
denote the element displacement vector, δ is displacement vector. 

3. Crack modeling and phase field theory 

In the phase field theory of fracture mechanics, the description of the 
state of the material is added with scalar variable s. This scalar variable 
changes continuously from 0 to 1. When s ¼ 0; the material is in a 
complete cracking state, whereas s ¼ 1; the material is in a state of no 
cracking. If the scalar variable s changes from 0 to 1, the material is in a 
soft state. Therefore, the scalar variable s describes the state of the 
material in the cracked region. This scalar variable s is a variable in the 
strain energy of the plate which is shown in the function s2; hence when 
the plate is cracked, the strain energy of the plate decreases. 

From the kinematic equation derived above, the total strain energy 
of plate can be written as:  

With qe is used to denote the element displacement vector, and GC is 
used for the critical energy release rate in Griffith’s theory and l is a 
positive regularization constant to adjust the size of the fracture zone. 

~σ0
¼

2

4
σ0

x τ0
xy

τ0
xy σ0

y

3

5 (11)  

Where σ0
x ; σ0

y are the normal stresses in the plate along the x, y axes, 
respectively; τ0

xy is the shear stress in the plate on the x – y plane, when 
external forces acting on the plate. 

The first variation of the functional Uðδ; sÞ according to δ; s is 
calculated by 
8
<

:

δUðδ; s; δδÞ ¼ 0
δUðδ; s; δsÞ ¼ 0 (12) 

From equation (12), the formulations for pre-buckling analyses of 
cracked plate can be described as follows: 
� X

Ke þ λcr

X
Ke

G

�
δ ¼ 0 (13)  

Z

Ω
2sΓðδÞδsdΩþ

Z

Ω
2GCh

�

�
ð1 � sÞ

4l
þ lrsrðδsÞ

�

dΩ ¼ 0 (14) 

After finding the value s in equation (14), replacing it on equation 
(13) could be easily computed the critical buckling load λcr. 

4. Numerical results and discussion 

According to the formulations (14) in section 3, the crack shape is 
defined as the function ΦðδÞ by Borden [20] as follows: 

ΦðδÞ ¼ B
GC

4l
:H0ðx; yÞ (15)  

Where H0ðx; yÞ ¼

8
>>>><

>>>>:

�

1 �
dðx; yÞ

l

�

if
� a cos θ

2
� x �

L
2
�

a cos θ
2 

and
� l
2
� y �

H
2
þ

�

x �
L
2

�

tan θ �
l
2
0 else . 

Where the magnitude of the scalar B is B ¼ 103, L and H are the 
length and width of the plate respectively, a and θ are the length and the 
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(10)   
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inclined angle of the crack, l is to control the width of the cracking zone, 
whereas dðx; yÞ is the closest distance from point ðx; yÞ to the boundary 
line l in fracture zone. After calculating the value of the function ΦðδÞ as 
the crack shape from equation (14), it is possible to find out the phase 
field variable s, and substitute into equation (13), it is easily to calculate 
the critical buckling load λcr and the buckling mode shape δ. 

4.1. Buckling factor of uncracked plate with exponentially varying 
thickness 

This study compared the buckling factor of the non-cracked plate 
with exponential thickness with the results from Refs. [23,25]. Variation 

in plate thickness is expressed as h ¼ h0e
x
L lnha

h0 : The plate is studied having 
the length-width ratio LH ¼ 0:5; 1:0; 1:5; 2:0, the thickness of the plate 
is also adjusted according to the ratio ha

ho
¼ 1:125; 1:25; 1:5; 1:75; 2:0. 

For convenience in numerical computations, the material properties of 
plate are set up that the Young modulus E ¼ 70 GPa, Poisson ratio υ ¼
0:33: The analyzing plate has no internal crack, and the plate is com
pressed in x-axis direction and the boundary condition in the model is set 
as simple supported in 4 sides (SSSS). Additionally, the buckling factors 
are calculated as non-dimensional value as following formula [23]: 

kM ¼
λcrH2

π2DM
where DM ¼

Eh3
M

12ð1 � υ2Þ
; hM ¼

ffiffiffiffiffiffiffiffiffi
h0ha

p
(16) 

Fig. 3 shows the buckling factor of plate with the thickness varying 
exponentially with respect to each dimension of the plate (Fig. 2). It can 
be observed that the calculated results are almost identical with that of 
Wittrick [25] and Nerantzaki [23]. When the edge ratio of the plate 
L/H ¼ 0.5, the buckling factor value is the biggest compared to the 
remaining cases. This can be explained by the compressive force in the x 
direction, so the bigger the stiffness in the x direction, the bigger the 

buckling factor. On the other hand, with H-side constant when the L-side 
is larger, the stiffness of the plate decreases or in other words, the higher 
the L/H ratio, the lower the stiffness of the plate. 

In all cases, when h0 is constant, the larger the thickness ratio of the 
plate ha =h0, the faster the local instability for the plate at the thin 
thickness of the plate (near the thickness position h0) leads to the smaller 
the buckling factor. 

4.2. Comparison in buckling factor of cracked FGM plate with no change 
in thickness 

The central cracked square FGM plate under compression, as 
depicted in Fig. 4, is considered in this section. Calculation of stability 
factors for cracked FGM plate using phase-field theory and third-order 
shear deformable plate theory is introduced. Plate FGM is made of Al 

Fig. 3. Comparison of nondimensionalized critical buckling factor of plate subjected to uniaxial compression along the x-axis.  

Fig. 4. The square cracked plate subjected to uniaxial compression along the 
x-axis. 
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and ZnO2 with the young’s modulus Em ¼ 70 GPa and Ec ¼ 151 GPa;
respectively. Also, the constant Poisson’s ratio of 0.3 is assumed through 
the thickness ðυm¼ υc¼ 0:3Þ: Furthermore, the boundary condition in 
the model is set as simple supported in 4 sides (SSSS). Finally, for 
analyzing the data, the length of the crack is changed as the ratio with 
the length of the plate (a/L) with the value of 0.1; 0.3; 0.5; 0.7 and 0.9; 
and the crack is at the central of the plate with the inclined angle θ ¼ 00. 
The buckling factor of plate is written as follows: 

kc¼
λcrH2

π2Dc
where Dc ¼

Ech3

12
�
1 � υ2

c

�

The comparison between current method results and results in Liu’s 
study [10] is described in Table 1, the buckling factors are computed 
really close with the reference solution. In reference [10], the author has 
investigated the buckling factors based on the Reissner-Mindlin theory 
and an accurate extended 3-node triangular plate element in the frame 
of the extended finite element method (XFEM). In this study, the new 
third order shear deformation plate theory (TSDT) and the finite element 
method (FEM) combined with phase field theory in modeling the crack 

Table 1 
Comparison of the buckling factors (kc) of a square plate FGM with the change of 
index n and crack length (L/H¼1; h/L¼0.01θ ¼ 00).  

n Methods a/L 

0.1 0.3 0.5 0.7 0.9 

0 XFEM [10] 3.963 3.6273 3.1877 2.8495 2.6807 
Present 3.925 3.5634 3.143 2.8372 2.67 

0.2 XFEM [10] 3.5071 3.2105 2.8215 2.5219 2.3723 
Present 3.4877 3.1665 2.793 2.5212 2.3992 

0.5 XFEM [10] 3.1001 2.8382 2.4944 2.2295 2.097 
Present 3.0854 2.8013 2.4709 2.2304 2.1225 

1 XFEM [10] 2.7709 2.5368 2.2295 1.9927 1.8743 
Present 2.7549 2.5013 2.2063 1.9916 1.8952 

2 XFEM [10] 2.5396 2.3246 2.0429 1.8261 1.7179 
Present 2.5235 2.291 2.0207 1.8241 1.7358 

5 XFEM [10] 2.356 2.1556 1.8943 1.6936 1.5937 
Present 2.3461 2.1296 1.8782 1.6955 1.6135 

10 XFEM [10] 2.2141 2.0256 1.7801 1.5915 1.4977 
Present 2.2116 2.0075 1.7707 1.5983 1.5211  

Fig. 5. The rectangular cracked plate with thickness varies exponentially under uniaxial compression load in x direction.  

Fig. 6. The effect of cracks on the buckling coefficient of FGM plate with variable thickness.  
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are used to compute the numerical results of buckling factors, calculated 
values described in Table 1 are very close to the solutions from the 
reference. 

4.3. The buckling factor of a cracked-FGM plate with the change of 
thickness 

In this section, the buckling factors of cracked FGM rectangular plate 
with length (L), width H ¼ 0.24 m and variable-thickness follow expo
nentially along the length of the plate are introduced. The Young 
modulus and Poisson ratio are kept the same as section 4.2: Em ¼

70 GPa;Ec ¼ 151 GPa and υm¼ υc ¼ 0:3: Otherwise, since the thickness 
h of the plate is changed exponentially, it can be defined as the formula 

of h ¼ h0e
x
L lnha

h0 [23]; where h0 is the minimum thickness in one side of the 

plate with h0 ¼
H

100, the thickness ha of the plate is changed according to 
the ratio with h0. Moreover, the crack is analyzed based on the change of 
length and position, the length (a) of crack will be changed as 0 (no 
cracks), 10%, 30% and 50% compared to the length (L) of the plate, the 
crack is in the central of plate with different inclined angles, 0�, 30� and 
60�. Finally, the boundary condition of the plate is fully simple support 
(SSSS) when applying the uniaxial compression load at 2 opposite side 
following the x axis direction. The numerical results are described in 
Fig. 6 as follows. 

As shown in Fig. 6, cracks are the places that have a significant 
impact on the stability coefficient of the plate. This is explained by the 
transformation of energy in the plate. In the plate, there is always a form 
of energy to be called the potential energy, the crack is the place that 
releases this energy, which causes the plate to be losed energy and that 
makes the plate more quickly to be buckling state. In this case, the crack 

Fig. 7. First five buckling modes of SSSS cracked FGM plate with changing in thickness (L ¼ 0.36 m, H ¼ 0.24 m, ha ¼ 2h0, n ¼ 2, a/L ¼ 0.5, l/H ¼ 400).  
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appears in the middle of the plate, which will be the first unstable po
sition due to the compressive force placed at two sides perpendicular to 
the x-axis. In conclusion, when the length of crack increases, the stability 
coefficient of the plate will be decreases. 

Obviously, the thickness ratio ha=h0 of the plate causes greatly affects 
the stability of cracked FGM plate. The buckling coefficient of the plate 
is decreased when the thickness ratio is increased, this is explained in 
section 4.1, because the stiffness of the plate also depends on the 
thickness of two opposite sides. We also see that the inclined angle of the 
crack also takes an important role to the stability of the FGM plate. With 
the inclined angle of the crack is 0�, when ha=h0 increases, the buckling 
coefficient of the plate decreases faster than the case of the inclined 
angle of the cracks is 30� and 60�. Here, the compressive force is parallel 
to the x axis, when the inclined angle of the crack is small (the inclined 
angle of the crack against the compressive force), the crack will be easier 
for opening with larger area, it means the energy is also more easily 
released. Hence, the inclined angle of the crack is 0�, the buckling co
efficient of the plate is the largest compared to other cases. Therefore, it 
can be concluded that the difference of thickness between the two sides 
of the plate or the change of thickness ratio of the plate greatly affects 
the stability of the plate even more than the impacts from the cracks. 
Fig. 7 shows the first five shape modes of the buckling in a central 
cracked rectangular plate when changing the thickness along the length 
of the plate with the boundary condition of the plate is fully simple 
support (SSSS). 

The next study will assess the impact of the power law index n to 
buckling behavior in the cracked FGM plate. The length of the central 
crack is 0; 0.1; 0.3; 0.5 in the ratio with the length of plate is shown in 
Table 2. The plate is placed as fully simple supported at four sides and is 
compressed along the x-axis (Fig. 5). The results shown in Table 2 show 
that, when the power law index n increases then the plate has a high rate 
of metal composition and thus the stiffness of the plate will be decreased, 
so the buckling factor decreases. 

In Table 3, when the ratio between the edges of the plate increases 
(L/H), the stability factor of a cracked-FGM plate decreases due to the 
compressive force along the x-axis. Similarly, when the inclined angle of 
the crack increases, the stability factor of the plate also decreases. 

5. Conclusion 

The effect of cracks on the stability of the exponentially variable 
thickness of FGM plates using high-order shear deformation theory and 
especially the phase field theory is presented in this study. The high- 
order shear deformation theory is applied to suit the change thickness 
of the plate along the x-axis. The phase field theory will be made better 
in this study because this is the first time it applies to compute internal 
crack in the FGM plate with variable-thickness follow exponentially. The 
calculation of the buckling coefficient of the plate has been compared to 
some reputable paper for checking the reliability of the model. The 
numerical results show that the change of thickness plate as well as 
crack parameters significantly affects the buckling coefficient of the 
plate. Cracking parameters such as length, inclination angle and position 
of crack change greatly to the buckling coefficient of the plate, when the 
length of crack increases, due to greater amount of the release energy, 
the stiffness of the plate decreases, and so the buckling factor decreases. 
The position of the crack as the middle of the plate also makes instability 
happen faster than as other locations. When the power law index n in
creases then the plate has a high rate of metal composition, as a result 
the buckling factor decreases. The thickness of the plate is changed 
exponentially, thus the thickness ratio ha=h0 greatly affects the stability 
of the plate. This paper opens a new study in controlling the thickness 
ratio suitable for changing thickness of FGM plates as well as limiting the 
force causing instability when the plate appears cracked. 
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